HYDRODYNAMIC ANALYSIS OF THE HOT ROLLING
OF SOME POLYMER MATERIALS

N. V. Roze UDC 532.135:678.023.5

The general flow-line picture is examined. Production of sheet with thickness between set
limits is discussed. Calculation formulas are given.

Here I present a reasonably complete theoretical study of the rolling of a material that obeys
T =y Mm-l Y
This power law has been chosen for simplicity. Rheological studies on polymers show that many of them

are well described by this formula over a wide range, especially various compositions based on PVC and
polyethylene [1], as well as filled rubber mixtures [2].

There are fairly many papers on calandering; the material has [3-5] been considered as a Newtonian
- fluid, or as a non-Newtonian one [6, 7] that obeys a power law, but with a constant effective viscosity, so
that the problem reduces to the flow of a Newtonian fluid. Other papers [8-10] deal with the flow of New-
tonian liquids having various types of relation between T and v.

The following assumptions were made in deriving the basic equations: 1) the problem is two-dimen-
sional; 2) the fluid is incompressible; 3) the flow is laminar; 4) the motion is of steady-state type; 5) the
inertial forces are small relative to the viscous ones; 6) the gravitational forces are small relative to the
viscous ones; 7) if the velocity component u(x, y) along the Ox axis is proportional to U, then v (the velocity
component along the Oyaxis) is proportional to Ul /L, where L and [ are the characteristic lengths along the
Oxand Oy axes, respectively, with L > I; 8) du/8x « U/L; 9) du/dy « U/I; 10) dv/ox « Ul/L%. The first
six assumptions give the basic equations [11] as:
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Conditions 8)}-10) may be used with the usual estimates of boundary-layer theory to give the latter relations
the form

p=px), (1)
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These equations may be derived from those given in [9].

Figure 1 shows how the rolls operate. We have to find the pressure and velocity distributions that
fit (1)-(3) in the region —x; =X = Xg and —h = y < +h, where xg > 0 is the roll insertion depth at which
calandering starts, which we assume as given. Also, x; will be determined in the subsequent investiga-
tion. Figure 1 shows that h = hy + R — VR? —x?. The rolls rotate at a constant angular velocity w (as-
sumption 11), and we assume that the material adheres to the rolls (assumption 12). Then

for y=20,v=0 _Qu_ = 0 (flow symmetry), (5)
9y
for y=h, u=—0(R+hy—h v=—ox (adhesion condition),
for x=—x; p=20 (assumption), (6)

x=x;, p=0 (assumption).

There are no negative pressures in the relevant region (assumption 15).

It has been assumed [12] in discussing lubrication theory that, if the lubricant layer breaks with dp
/dx # 0, thenthe break occurs in an unstable position and the break point moves in the direction of de-
creasing pressure. Assumption 16 is that dp/dx = 0 at the point where the material breaks away.

We give briefly the results of [13]. We integrate (2) and use (5) and (6) to get

1
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The flow rate at any point is
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We equate the flow rates in any section and in the section where the calandering stops (x = —x;) (assump-
tion 2), which gives a differential equation for p:
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Assumptions (13) and (16) givethe following equations for dp/dx and p(x):
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where A = pg[(2m +1)/m]™ w™; hy =R + hy— hy; hy > hy.
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Fig. 1. Scheme of roll operation.

Fig. 2. Graphs of p(¢) and dp/d¢: 1) k =1.22, m =1.0; 2) 1.22 and 0.31; 3) 1.24 and 0.31;
4) 0.22 and 0.31. 7, = 0.00625.

We see from (8) that p(x) touches the Ox axis at x = —x;, has a maximum at x = +x;, and a minimum
at X = Xy(h = hy). Assumption 14) gives the following relation for h; (or x):

f (ty— 1) Iy — By — )y — B (19
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Consider the behavior of p(x) as a function of hy. We assume that there is a value hy = hy; X =xy7)
such that p{x) touches the Oxaxisat x = %57, X57 > Xy7. Then hy; and hy; (x = xy]) are defined by

4P 0, p=0 o hy=R+h—hy,
dx

and
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Let xg satisfy %37 < Xg < xy; then there will be a value h, that satisfies assumptions 13}, 14), and 15). If
h, = h;, we see that p(x) will be negative for x > 0. Also, h; varies within the limits hj7 > h; > hy. We in-
troduce the following dimensionless quantities: b/R =n, x/R =¢§ x;/R =§, hj/hy = k; then (8) and (9)
may be put as follows (Fig. 2):
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If we replace integration along the arc by the approximation of integration along a straight line, the
reaction on the rolls is

xS —
P=L 5pdx=LRP,

a
where
— &
P={p@®d
—£1
and L is the working _vgidth of tl_l_e roll_s. Then (2)-(4) give the stress at y = h due to viscous friction as
7 = (dp/dx)h or 7 = A1, where 7 = (dp/dé)n. The frictional force per unit roll length is

5
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and M = FRL is the torque due to the viscous friction.
Consider the flow-line pattern. We substitute (8) into (7) to get
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This gives du/dx. It follows from (3) that this expression equals —8v/dy. We integrate the expression for
av/9y with respect to y and use (6) to get

g © 1 dy
m+1 h dx &
m1
X 1 (B — (m 4 DR + ho) b — (2m-+1) hlhz]“yh_) m _.1J——(m+l)h(R+ho—h),. (14)

The following is the differential equation for the flow lines:
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The following equations give the coordinates of the singularity M(xy;, ym):
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Then
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and from
h=R+th—VR—2,
y=0, @m-+ 1) F2— k(R +hy) + hhy] + (m+ iR+ hy— b) =0,
mh? —m (R + hy) h+ (2m + 1) hyh, =0,
whence

We assume that

(R + hy* — 4 2’"’: Lok, >0, (16)

We see from (13) and (14) that we have branch points at N;(X;, 0) and N,(X,, 0), where X; and X, are values
of x corresponding to Hy and H,. We now show that point M is a center, for which purpose we make a
parallel transfer of the coordinate axes, placing the origin at M, the conversion formulas being x = x + X\
andy =y + yM. The functions in the numerator and' denominator on the right in (15) are continuous, as
are their partial derivatives with respect to x and y within the relevant region. Equation (15) can be put
in the following form [14]:
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From (16) we conclude that yp; > 0, a > 0, b< 0, ¢ > 0, d < 0. We have:
¢+ b=0,
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We would have a center at M if the right side of (15) were a fractional linear function. It will be clear from
what follows that M is a center in this case also. We integrate (15):
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We examine the flow line for C = 0:

1. y=0,h\<\H1:
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= hlty + R+ 2L
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The curve defined by (17) meets the vx axis at N; and N,. The zero flow line is a loop with two branches
that have an asymptote, whose equation is of the form x =x,. It is readily shown that M lies within the
region bounded by the zero flow line. The two different integral curves for the differential equation inter-
sect only at the singular points of that equation if the functions in the numerator and denominator on the
right in (15) are continuous, as are their first partial derivatives with respect to x and y. The closure

of the zero flow line implies that M is a center (vortex point) and that all flow lines having C > 0 are closed
lines.

The reserve of material, i.e., the volume not involved in the rolling, is defined hy

5 B —h(R + by + 2P

9= “S Gk tiy—h)

1

hh,
hdx.

This shows that g and the flow-line pattern are not dependent on the angular velocity of the rolls. The
equation for g can be given the following form in terms of dimensionless quantities:
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It is important to produce films and sheets having uniform thickness by calandering, and this we now
consider. We write (10) in terms of dimensionless quantities:
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This allows us to calculate the relative thickness k of the emerging sheet, which is dependent on: 1) the
minimum relative gap ny; 2) the roll insertion depth £4; 3) power m. We assume that m and ¢4, generally
speaking, vary within certain limits, while 7, is a constant, We term the process stable if we have not only
[m—m® < e and | &g — £%] < &, but also |k — k| < &, for n, constant, where m®, £%, k®and & > 0, &, > 0,
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Fig. 3. Graph of k({g) for various m with Fig. 4. Graphs of T'(¢) for various m with
1 = 0.0025, 1 = 0.0025.
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g4 > 0 are quantities specified in advance. The stability may be judged from the curves of Fig. 3. The
process becomes more stable as m decreases and as £g increases. Figure 4 shows that the frictional
force varies little with g if m is small enough, but that F begins to increase rapidly if m approaches one.

A program has been written for the Minsk-2 computer in order to calculate the quantities.

NOTATION
T is the shear stress;
v is the velocity gradient;
Ko, M are the rheological constants of the material;
u, Vv are the velocity components along the Ox and Oy axes;
p is the pressure;
Xg is the loading thickness.
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